We have,
I. n!≤nn n!nn=nn×(n−1)n×(n−2)n×…×1n
Clearly nnn≥1 ∴nn≥n! True
II. (n!)2≤nn is False
III. 10n≤n! 10nn!=10n×10n−1×10n−2×…×101
Given, n>1000. Clearly, 10nn!≥1
Hence, it is also true.
IV. nn≤(2n)! nn2n!=n×n×n…ntimes1⋅2⋅3⋅4…n(n+1)(n+2)…(n+n) =n×n×n×…ntimesn!(n+1)(n+2)(n+3)…(n+1) =n!(1+n1)(1+n2)(1+n3)…(1+nn)
Clearly n≥1 ∴ It is also true