sin2θ+tan2θ>0 ⇒sin2θ+cos2θsin2θ>0 ⇒sin2θcos2θ(cos2θ+1)>0⇒tan2θ(2cos2θ)>0
Note :cos2θ=0 ⇒1−2sin2θ=0⇒sinθ=±21
Now, tan2θ(1+cos2θ)>0 ⇒tan2θ>0( as cos2θ+1>0) ⇒2θ∈(0,2π)∪(π,23π)∪(2π,25π)∪(3π,27π) ⇒θ∈(0,4π)∪(2π,43π)∪(π,45π)∪(23π,47π)
As sinθ=±21; which has been already considered