Q.
A wire of length 2 units is cut into two parts which are bent respectively to form a square of side =x units and a circle of radius =r units. If the sum of the areas of the square and the circle so formed is minimum, then :
Let length of two parts be ‘a’ and ‘2−a’
As per condition given, we write a=4x and 2−a=2πr ∴x=4a and r=2π2−a ∴ A (square) = (4a)2=16a2 and
A (circle) =π[2π(2−a)]2=4π2π(4+a2−4a) =(4πa2−4a+4) f(a)=16a2+4πa2−4a+4 ∴f(a)=16πa2π+4a2−16a+16 ∴f′(a)=16π1[2aπ+8a−16] f′(a)=0 ⇒2aπ+8a−16=0 ⇒2aπ+8a=16 ∴2a(π+4)=16 ⇒a=π+48 x=4a=π+42 and r=2π2−a=2π2−π+48 =2π(π+4)2π+8−8=π+41 ∴x=π+42 and r=π+41 ⇒x=2r