Q.
A vertical pole subtends an angle tan−1(21) at a point P on the ground. If the angles substended by the upper half and the lower half of the pole at P are respectively α and β, then (tanα,tanβ) is equal to
Let AC be a pole and point P be the position on of the ground.
Given, θ=tan−121 ⇒tanθ=21
Also, θ=α+β ⇒tanθ=tan(α+β) ⇒21=1−tanαtanβtanα+tanβ
(a) When (tanα,tanβ)=(41,51) ∴RHS=1−41×5141+51=2019209 =199=21, not true
(b) When (tanα,tanβ)=(51,92) RHS=1−51×9251+92=45434519 =4319=21, not true
(c) When (tanα,tanβ)=(92,41) RHS=1−92×4192+41=36343617=21, true