We know that a vector perpendicular to the plane containing the points A,B,C is given by A×B+B×C+C×A
We have, A=i^−j^+2k^,B=2i^+0j^−k^
and C=0i^+2j^+k^
Now, A×B=∣∣i^12j^−10k^2−1∣∣=i^+5j^+2k^ B×C=∣∣i^20j^02k^−11∣∣=2i^−2j^+4k^ C×A=∣∣i^01j^2−1k^12∣∣=5i^+j^−2k^
Thus, A×B+B×C+C×B=(i^+5j^+2k^) +(2i^−2j^+4k^)+(5i^+j^−2k^) =8i^+4j^+4k^