Let xi^+yj^+zk^ be the required unit vector.
Since a^ is perpendicular to (2i^−j^+2k^). ∴2x−y+2z=0...........(i)
Since vector xi^+yj^+zk^ is coplanar with the vector i^+j^−k^and2i^+2j^−k^. ∴xi^+yj^+zk^ =p(i^+j^−k^)+q(2i^+2j^+k^),
where p and q are some scalars. ⇒xi^+yj^+zk^ =(p+2q)i^+(p+2q)j^−(p+q)k^ ⇒x=p+2q,y=p+2q,z=−p−q
Now from equation (i), 2p+4q−p−2q−2p−2q=0 ⇒−p=0⇒p=0 ∴x=2q,y=2q,z=−q
Since vector xi^+yj^+zk^ is a unit vector, therefore ∣∣xi^+yj^+zk^∣∣=1 ⇒x2+y2+z2=1 ⇒x2+y2+z2=1 ⇒4q2+4q2+q2=1 ⇒9q2=1⇒q=±31
When q=31, then x=32,y=32, z=−31
When q=−31, then x=−32,y=−32, z=31
Here required unit vector is 32i^+32j^−31k^
or −32i^−32j^+31k^.