Let unit vector is ai^+bj^+ck^ ∵ai^+bj^+ck^ is ⊥ to i^+j^+k^,
then a+b+c=0 ...(i) and ai^+bj^+ck^,(i^+2j^+k^) and (i^+j^+2k^) are coplanar ∴∣∣a11b12c21∣∣=0 ⇒−3a+b+c=0 ...(ii)
From Eqs. (i) and (ii), we get a=0 and c=−b ∵ai^+bj^+ck^ is a unit vector, then a2+b2+c2=1 ⇒0+b2+b2=1⇒b=21 ∴ai^+bj^+ck^=21j^−21k^ =2j^−k^