Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A uni-modular tangent vector on the curve x = t2 + 2, y - 4t - 5, z = 2t2 -6t at t = 2 is
Q. A uni-modular tangent vector on the curve
x
=
t
2
+
2
,
y
−
4
t
−
5
,
z
=
2
t
2
−
6
t
at
t
=
2
is
2327
204
Vector Algebra
Report Error
A
3
1
(
2
i
^
+
2
j
^
+
k
^
)
0%
B
3
1
(
i
^
−
j
^
−
k
^
)
100%
C
6
1
(
2
i
^
+
j
^
+
k
^
)
0%
D
3
12
(
i
^
+
j
^
+
k
^
)
0%
Solution:
The position vector of any point at
t
is
r
=
(
2
+
t
2
)
i
^
+
(
4
t
−
5
)
j
^
+
(
2
t
2
−
6
)
k
^
⇒
d
t
d
r
=
2
t
i
^
+
4
j
^
+
(
4
t
−
6
)
k
^
⇒
d
t
d
r
∣
t
=
2
=
4
i
^
+
4
j
^
+
2
k
^
and
∣
∣
d
t
d
r
∣
∣
t
=
2
=
16
+
16
+
4
=
4
Hence, the required unit tangent vector at
t
=
2
is
3
1
(
2
i
^
+
2
j
^
+
k
^
)