Any tangent to given hypererbola, is 4x⋅2secθ−1y⋅tanθ=1
Let (x1,y1) be the middle point of the chord of ellipse. ∴ Its equation is 4xx1+1yy1=4x12+1y12
As (1) and (2) are identical, so x12secθ=y1−tanθ=4x12+1y121⇒secθ=x12+4y122x1 and tanθ=x12+4y12−4y1
As, sec2θ−tan2θ=1, so (x12+4y12)24x12−(x12+4y12)216y12=1 ⇒ Locus is (x2+4y2)2=4(x2−4y2).