Q.
A straight line L with negative slope passes through the point (8,2) and cuts the positive
coordinates axes at points P and Q. Find the absolute minimum value of OP+OQ, as L varies, where O
is the origin
Let the line be y−2=−k(x−8)k>0 Point P(k8k+2,0); Point Q(0,8k+2) ∴OP+OQ=k8k+2+8k+2=10+k2+8k=10+2(4k+k1) =10+2[(2k−k1)2+4] ∴ Minimum value of OP+OQ when 2k−k1=0⇒2k−1=0⇒k=21 ∴ Minimum value =10+8=18 ∴ymin=∣a+b∣ equation ax+by=1a>0,b>0 a8+b2=1 b2=(1−a8)=aa−8 b=a−82a z=a+a−82a=∣∣a−8a2−8a+2a∣∣=∣∣a−8a2−6a∣∣ (a−8)(4a+6)−(a2−6a)=0 2a2−44a+48−a2+6a a=∣2∣ or a=y a2−16a+48 (a−12)(ax−y)=0