From equation of rotational motion, we have ω2=ω02=2αθ… (i)
where ω is angular velocity, α the angular acceleration and θ the angular displacement.
Also, ω=2πf… (ii)
Where f is number of revolutions.
From Eqs. (i) and (ii), we get
For ω=0 (sphere stop), θ=2π×2π=4π2 ∴n=300 rev / min =60300=5 rev / s ∴0=(2π×5)2−2α(2π)2 ⇒α=8π2100π2=12.5 rad / s
Torque applied τ=Iα
where I is moment of inertia, a the angular acceleration.
For a sphere, I=52mR2 ∴τ=52mR2α ⇒τ=52×2×(5×10−2)2×12.5 ⇒τ=2.5×10−2N−m