Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A solution of the differential equation ((dy/dx))2-x(dy/dx) + y = 0 is
Q. A solution of the differential equation
(
d
x
d
y
)
2
−
x
d
x
d
y
+
y
=
0
is
1770
202
AMU
AMU 2013
Differential Equations
Report Error
A
y
=
2
x
B
y
=
−
2
x
C
y
=
2
x
−
4
D
y
=
2
x
+
4
Solution:
Let
y
=
2
x
−
4
be a solution of the differential equation
(
d
x
d
y
)
2
−
x
(
d
x
d
y
)
+
y
=
0
Now, we cross check this solution
LHS
(
d
x
d
y
)
2
−
x
(
d
x
d
y
)
+
y
=
{
d
x
d
(
2
x
−
4
)
}
2
−
x
{
d
x
d
(
2
x
−
4
)
}
+
(
2
x
−
4
)
=
(
2
)
2
−
x
(
2
)
+
2
x
−
4
=
4
−
2
x
+
2
x
−
4
=
0
=
RHS
∴
y
=
2
x
−
4
be a required solution.