Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A solution curve of the differential equation (x2+x y+4 x+2 y+4) (d y/d x)-y2=0, x>0, passes through the point (1,3). Then the solution curve
Q. A solution curve of the differential equation
(
x
2
+
x
y
+
4
x
+
2
y
+
4
)
d
x
d
y
−
y
2
=
0
,
x
>
0
, passes through the point
(
1
,
3
)
. Then the solution curve
2953
228
JEE Advanced
JEE Advanced 2016
Report Error
A
intersects
y
=
x
+
2
exactly at one point
B
intersects
y
=
x
+
2
exactly at two points
C
intersects
y
=
(
x
+
2
)
2
D
does NOT intersect
y
=
(
x
+
3
)
2
Solution:
(
(
x
+
2
)
2
+
y
(
x
+
2
)
)
d
x
d
y
−
y
2
=
0
(
x
+
2
)
(
x
+
2
+
y
)
d
x
d
y
=
y
2
d
x
d
y
=
(
x
+
2
)
2
+
(
x
+
2
)
y
y
2
d
x
d
y
=
(
y
x
+
2
)
2
+
y
x
+
2
1
Let
y
x
+
2
=
t
x
+
2
=
t
y
1
=
d
x
d
y
⋅
t
+
y
d
x
d
t
(
1
−
y
d
x
d
t
)
t
1
=
d
x
d
y
∴
(
1
−
y
d
x
d
t
)
t
1
=
t
(
t
+
1
)
1
y
d
x
d
t
=
t
+
1
t
t
x
+
2
d
x
d
t
=
t
+
1
t
∫
x
+
2
d
x
=
∫
t
2
t
+
1
d
t
ℓ
n
(
x
+
2
)
=
ℓ
n
t
−
t
1
+
C
ℓ
n
(
t
x
+
2
)
=
−
t
1
+
C
⇒
ℓ
n
y
=
x
+
2
−
y
+
C
(
∵
y
=
t
x
+
2
)
It passes through
(
1
,
3
)
ℓ
n
3
=
−
1
+
C
⇒
C
=
1
+
ln
3
ℓ
n
y
=
x
+
2
−
y
+
1
−
ln
3
ℓ
n
3
y
=
x
+
2
−
y
+
1
This curve intersects
y
=
x
+
2
ℓ
n
3
x
+
2
=
0
⇒
x
=
−
1
Only one solution.
This curves intersects
y
=
(
x
+
2
)
2
ℓ
n
3
(
x
+
2
)
2
=
−
x
−
2
+
1
=
−
x
−
1
(
x
+
2
)
2
=
3
e
−
x
−
1
but
x
>
0
No solution
y
=
(
x
+
3
)
2
ℓ
n
3
(
x
+
3
)
2
=
x
+
2
−
(
x
+
3
)
2
+
1
=
x
+
2
−
x
2
−
9
−
6
x
+
x
+
2