Q.
A relation R on the set of complex numbers is defined by, z1Rz2⇔z1+z2z1−z2 is real, then the relation R is
2748
236
Relations and Functions - Part 2
Report Error
Solution:
Since z1+z1z1−z1=0, which is real ∀z1∈C,
therefore R is reflexive.
For z1,z2∈C,z1Rz2 ⇒z1+z2z1−z2 is real ⇒−(z1+z2z1−z2) is real ⇒(z2+z1z2−z1) is real ⇒z2Rz1.
For z1,z2,z3∈C
let z1=a1+ib1,z2=a2+ib2
and z3=a3+ib3.
Now, z1Rz2⇒z1+z2z1−z2 is real ⇒(a1+a2)+i(b1+b2)(a1−a2)+i(b1−b2) is real ⇒(a1+a2)+i(b1+b2)(a1−a2)+i(b1−b2)×(a1+a2)−i(b1+b2)(a1+a2)−i(b1+b2) is real ⇒(a1+a2)2+(b1+b2)2(a1−a2)(a1+a2)+(b1−b2)(b1+b2)+i[(b1−b2)(a1+a2)−(b1+b2)(a1−a2)] is real ⇒(a1+a2)(b1−b2)−(a1−a2)(b1+b2)=0 ⇒2a2b1−2b2a1=0 ⇒a2a1=b2b1
or b1a1=b2a2
and b2a2=b3a3
Similarly, z2Rz3⇒b2a2=b3a3 z1Rz2 and z2Rz3
Therefore, ⇒b1a1=b2a2
and b2a2=b3a3 ⇒b1a1=b3a3 ⇒z1Rz3 ∴R is transitive.
Hence R is an equivalence relation.