We have , dxdy=(x+9y)2 ....(i)
Put x+9y=t⇒1+9dxdy=dxdt
Now (i) becomes ⇒dxdt−1=9t2⇒9t2+1dt=dx ⇒91∫t2+91dt=∫dx+C ⇒91×3tan−1(3t)=x+C ⇒31tan−1(3x+27y)=x+C .....(ii)
Now, x=0,y=271 ⇒31tan−1(1)=0+C⇒C=12π
So (ii) becomes ∴31tan−1(3x+27y)=x+12π ⇒3x+27y=tan3(x+12π)