Q.
A normal to the hyperbola 6x2−2y2 has equal intercepts on positive x and y-axis. If this normal touches the ellipse a2x2+b2y2=1, then find the value of 4a2+b2.
The equation of normal at (6secθ,2tanθ) is secθ6x+tanθ2y=8 Slope =−1⇒secθ−6×2tanθ=−1 sinθ=31 N:x+y=4
Now, y=−x+4 is tangent to a2x2+b2y2=1
Hence, (a2+b2)=16