Given equation x+x100>50⇒x2−50x+100>0⇒(x−25)2>525 ⇒x−25<−(525) or x−25>(525) ⇒x<25−(525) or x>25+(525)
As x is positive integer and (525)=22.91, we must have x≤2 or x≥48
Let E be the event for favourable cases and S be the sample space. ∴E={1,2,48,49,......100} ∴n(E)=55 and n(S)=100
Hence the required probability P(E)=n(S)n(E)=10055=2011