Let the given points are A(1,0) and B(2,3). Let the line PQ divide AB in the ratio 1:n at R.
Using section formula for internal division R=(1+n1×x2+n×x1,1+n1×y2+n×y1) =(1+n1×2+n×1,1+n1×3+n×0) =(n+1n+2,1+n3)(∵x1=1,y1=0,x2=2,y2=3)
Also, PQ⊥AB
Let slope of line PQ is m. ∴ Slope of line PQ× Slope of line AB=−1 (∵m1m2=−1) ⇒m×x2−x1y2−y1=−1 ⇒m×2−13−0=−1 ⇒m×3=−1 ⇒m=−31
Now, equation of line PQ by using y−y1=m(x−x1) ⇒y−1+n3=3−1(x−n+1n+2) [∵R(n+1n+2,1+n3)=(x1,y1)] ⇒1+n3(n+1)y−9=n+1−x(n+1)+(n+2) ⇒3(n+1)y−9=−x(n+1)+(n+2) ⇒x(n+1)+3(n+1)y=n+2+9 ⇒x(n+1)+3(n+1)y=n+11