Q.
A line 3x+y=8 touches a hyperbola H=0 at P(1,5) meets its asymptotes at A and B. If AB=210,C(1,1) be the centre of hyperbola, e and l are eccentricity and latus rectum of hyperbola then
By properties PA=PB=10 1/10x1−3/10y−5−±10;A−(0,8);B−(2,2)
Now, 2tan−1ab−tan−134−1−a2b2a2b−34;ab−21 a2b2=e2−1⇒e=25
Also, area of △CAB=ab:ab=21∣∣(82)∣∣0(21)∣∣2(18)∣∣=4 b2−2,a−2b−22, length of latus rectum −a2b2−224−2