Q.
A is a 3×3 matrix where its first row is (100) , second row is (210) and third row is (321).P,Q and R are column matrices such that AP=(100)T,AQ=(230)T and AR=(001)T . If P,Q and R are three columns of matrix U , then ∣U∣=
2696
211
J & K CETJ & K CET 2017Determinants
Report Error
Solution:
We have, A=⎣⎡123012001⎦⎤
Let P=⎣⎡x1y1z1⎦⎤, Q=⎣⎡x2y2z2⎦⎤
and R=⎣⎡x3y3z3⎦⎤
Now, AP=⎣⎡x12x1+y13x1+2y1+z1⎦⎤=⎣⎡100⎦⎤ ⇒x1=1,y1=−2 and z1=1
Again, AQ=⎣⎡x22x2+y23x22y2+z2⎦⎤=⎣⎡230⎦⎤ ⇒x2=2, y2=−1
and z2=−4 ∴AR=⎣⎡x32x3+y33x3+2v3+z3⎦⎤=⎣⎡001⎦⎤ ⇒x3=0,y3=0 and z3=1
So, U=⎣⎡1−212−1−4001⎦⎤ ∣U∣=1(−1+4) =3