Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A function y=f(x) satisfies (x+1) ⋅ f prime(x)-2(x2+x) f(x)=(ex2/(x+1)), ∀ x>-1 If f(0)=5, then f(x) is
Q. A function
y
=
f
(
x
)
satisfies
(
x
+
1
)
⋅
f
′
(
x
)
−
2
(
x
2
+
x
)
f
(
x
)
=
(
x
+
1
)
e
x
2
,
∀
x
>
−
1
If
f
(
0
)
=
5
, then
f
(
x
)
is
1599
111
Differential Equations
Report Error
A
(
x
+
1
3
x
+
5
)
⋅
e
x
2
B
(
x
+
1
6
x
+
5
)
⋅
e
x
2
C
(
(
x
+
1
)
2
6
x
+
5
)
⋅
e
x
2
D
(
x
+
1
5
−
6
x
)
⋅
e
x
2
Solution:
f
′
(
x
)
−
x
+
1
2
x
(
x
+
1
)
f
(
x
)
=
(
x
+
1
)
2
e
x
2
I. F.
=
e
∫
−
2
x
d
x
=
e
−
x
2
∴
f
(
x
)
⋅
e
−
x
2
=
∫
(
x
+
1
)
2
d
x
⇒
f
(
x
)
⋅
e
−
x
2
=
−
x
+
1
1
+
C
at
x
=
0
,
f
(
0
)
=
5
⇒
C
=
6
∴
f
(
x
)
=
(
x
+
1
6
x
+
5
)
⋅
e
x
2