Q.
A function y=f(x) satisfies the differential equation dxdy−y=cosx−sinx, with initial condition that y is bounded when x→∞. The area enclosed by y=f(x),y=cosx and the y-axis in the 1st quadrant
I.F. =e−x ∴ye−x=∫e−x(cosx−sinx)dx put −x=t =−∫et(cost+sint)dt =−etsint+c y−x=e−xsinx+c since y is bounded when x→∞⇒c=0 ∴y=sinx Area =0∫π/4(cosx−sinx)dx=2−1⇒ (D)