Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A function f(x) satisfying ∫ limits01 f(t x) d t=n f(x), where x>0, is -
Q. A function
f
(
x
)
satisfying
0
∫
1
f
(
t
x
)
d
t
=
n
f
(
x
)
, where
x
>
0
, is -
482
180
Differential Equations
Report Error
A
f
(
x
)
=
c
⋅
x
n
1
−
n
B
f
(
x
)
=
c
⋅
x
n
−
1
n
C
f
(
x
)
=
c
⋅
x
n
1
D
f
(
x
)
=
c
⋅
x
(
1
−
n
)
Solution:
0
∫
1
f
(
t
x
)
d
t
=
n
f
(
x
)
Let
t
x
=
u
⇒
d
t
=
x
d
u
∴
x
1
0
∫
x
f
(
u
)
d
u
⇒
n
f
(
x
)
⇒
0
∫
x
f
(
u
)
d
u
=
n
x
f
(
x
)
f
(
x
)
=
n
[
f
(
x
)
+
x
f
′
(
x
)
]
⇒
f
(
x
)
(
n
1
−
n
)
=
x
f
′
(
x
)
∫
x
d
x
=
1
−
n
n
∫
y
d
y
⇒
n
1
−
n
ℓ
n
x
=
ℓ
n
y
+
ℓ
n
c
x
n
1
−
n
=
cy
⇒
y
=
c
′
x
n
1
−
n