From figure, we observe that, θ=4π ∴A=(cos4π,sin4π)=(21,21) B=(sin4π,−cos4π)=(21,−21)
and 0=(0,0)= origin ∴ Centroid of ΔABO ={321+21+0,321−21+0} =(322,0)=(32,0)
Let (h,k) be centroid of ΔOAB.
Then, (h,k)=(3sinθ+cosθ,3sinθ−cosθ) ⇒sinθ+cosθ=3h…(i)
and sinθ−cosθ=3k...(ii)
Now, on adding Eqs. (i) and (ii) after squaring, we get (3h)2+(3k)2=(sinθ+cosθ)2+(sinθ−cosθ)2=2 ⇒n2+k2=92
Hence, required locus is x2+y2=92 or 9x2+9y2=2