Tardigrade
Tardigrade - CET NEET JEE Exam App
Exams
Login
Signup
Tardigrade
Question
Mathematics
A continuous function f: R arrow R satisfy the differential equation f ( x )=(1+ x 2)(1+∫ limits0 x ( f 2( t )/1+ t 2) dt ) then the value of f(-2) is
Q. A continuous function
f
:
R
→
R
satisfy the differential equation
f
(
x
)
=
(
1
+
x
2
)
(
1
+
0
∫
x
1
+
t
2
f
2
(
t
)
d
t
)
then the value of
f
(
−
2
)
is
609
96
Differential Equations
Report Error
A
0
B
15
17
C
15
−
17
D
17
15
Solution:
1
+
x
2
f
(
x
)
=
1
+
0
∫
x
1
+
t
2
f
2
(
t
)
d
t
[Note:
f
(
0
)
=
1
]
differentiate both sides w.r.t.
x
(
1
+
x
2
)
2
(
1
+
x
2
)
f
′
(
x
)
−
f
(
x
)
(
2
x
)
=
(
1
+
x
2
)
f
2
(
x
)
d
x
d
y
−
(
1
+
x
2
2
x
)
y
=
y
2
y
2
1
d
x
d
y
−
(
1
+
x
2
2
x
)
y
1
=
1
Let
y
−
1
=
t
d
x
d
t
+
(
1
+
x
2
2
x
)
t
=
1
solving the above L.D.E,
f
(
x
)
=
x
3
+
3
x
−
3
−
3
(
1
+
x
2
)
f
(
−
2
)
=
−
8
−
6
−
3
−
3
(
5
)
=
17
15