Given circles x2+y2−2x−15=0 x2+y2−1=0
Radical axis x+7=0
Centre of circle lies on (1)
Let the centre be (−7,k)
Let equation be x2+y2+14x−2ky+c=0
Orthogonallity gives −14=c−15 ⇒c=1...(2) (0,1)→1−2k+1=0 ⇒k=1
Hence radius =72+k2−c =49+1−1=7
Alternate solution
Given circles x2+y2−2x−15=0 x2+y2−1=0
Let equation of circle x2+y2+2gx+2fy+c=0
Circle passes through (0,1) ⇒1+2f+c=0
Applying condition of orthogonality −2g=c−15,0=c−1 ⇒c=1,g=7,f=−1 r=49+1−1=7;
centre (−7,1)