Let the equation of circle be S≡x2+y2+2gx+2fy+c=0
Since, this circle cuts orthogonally to the circles x2+y2−4x−2y+4=0 x2+y2−2x−4y+1=0
and x2+y2+4x+2y+1=0, respectively. ∴2g(2)+2f(1)=c+4...(i) 2g(1)+2f(2)=c+1...(ii)
and 2g(−2)+2f(−1)=1+c...(iii)
On solving Eqs. (i), (ii) and (iii), we get g=43,f=−43,c=4−10 ∴ Equation of circle S≡x2+y2+23x−23y−410=0 ∴ Radius of circle S=(43)2+(4−3)2+410 =169+169+410=1658=829