Given, AM=2AB ⇒B is mid-point of AM. ∴ Coordinate of B is (20+x1,23+y1) =(2x1,2y1+3)
Since, B lies on the circle x2+4x+(y−3)2=0 ∴(2x1)2+4(2x1)+(2y1+3−3)2=0 ⇒4x12+2x1+(2y1−3)2=0 ⇒4x12+2x1+4y12+9−6y1=0 ⇒x12+y12+8x1−6y1+9=0
Hence, locus of a point is x2+y2+8x−6y+9=0