Given vectors a=3i^+j^−k^,b=i^−4j^+5k^
and c=4i^+5j^−k^ ∵b×c=∣∣i^14j^−45k^5−1∣∣=i^(4−25)−j^(−1−20) +k^(5+16) =−21i^+21j^+21k^=21(−i^+j^+k^) ⇒∣b×c∣=213
Now, vector r, which is perpendicular to b and c, so r=±∣r∣∣b×c∣b×c ∵dr⋅a=y ⇒±∣b×c∣∣r∣[21(−i^+j^+k^)⋅(3i^+j^−k^)]=9 ⇒±213∣r∣[21(−3+1−1)]=9 ⇒∣r∣=33 (∵∣r∣>0) ∴r=±3321321(−i^+j^+k^)=±3(−i^+j^+k^) =−3(i^+j^+k) or 3(i^−j^−k^)