Given, x2−6x+83x2+1
On dividing, we get x2−6x+83x2+1=3+x2−6x+818x−23.....(i)
Now, (x−2)(x−4)18x−23=x−2A+x−4B ⇒18x−23=A(x−4)+B(x−2) ⇒18x−23=(A+B)x−4A−2B
Equating the coefficient of x and constant
term, we get
A + B = 18
- 4 A - 2 B = -23
On solving these equations, we get A=−213,B=249 ∴(x−2)(x−4)18x−23=−2(x−2)13+2(x−4)49
Then, from Eq. (i), we get x2−6x+83x2+1=3−2(x−2)13+2(x−4)49