Since, (101)50=(100+1)50 =10050+50C110049+50C210048+…+1…(i)
and (99)50=(100−1)50 =10050−50C110049+50C210048−...+1…(ii)
On subtracting (ii) from (i), we get (101)50−(99)50=2{50C110049+50C310047+…} =2×50C110049+(2×50C3×10047+...) =100×10049+a positive number >10050 ⇒(101)50>(100)50+(99)50