We have, 1−163+1⋅21⋅4(163)2−1⋅2⋅31⋅4⋅7(163)3+…=
We know that, (1−x)n=1−nx+2!n(n−1)x2−3!n(n−1)(n−2)x3
Let (1−x)n=1−163+1⋅21⋅4(163)2−1⋅2⋅31⋅4⋅7(163)3⋅s ∴nx=163 and 2!n(n−1)x2=2!1⋅4(163)2 nx=163 and n(n−1)x2=4(163)2 n2⋅x2=1632 and n(n−1)x2=4(163)2 n(n−1)x2=4n2x2 n2−n=4n2 n−1=4n ⇒n=−31 x=163×−3=16−9 (1−x)n=(1+169)−1/3 =(1625)−1/3 =(54)2/3