Question Error Report

Thank you for reporting, we will resolve it shortly

Back to Question

Q. Using raw data given below derive interquartile range, semiquartile range, and coefficient of quartile deviation. Choose the correct choice/s given below. Data given is $X =20,12,18,28,32,10$

Statistics

Solution:

Arrange the data in ascending order $X=10,12,18,20,25,32$
Number of items $=6$
$Q _1=(\frac{n+1}{4})^{\frac{6}{n}}$ item $=(\frac{6+1}{4})^{\text {th }}$ item
$Q _1=(1.75)^{\text {th }}$ item
So, $Q _1= I ^{ st }$ item $+0.75(2^{\text {nd }}.$ item $-[^{\text {st }}.$ item $)$
$=10+0.75(12-10)$
$=10+0.75(2)$
$=10+1.50=11.50$
$Q_3=3(\frac{N+1}{4})^{\text {th }}$ item $=3(\frac{6+1}{4})^{\text {th }}$ item
$Q _3=(5.25)^{\text {th }}$ item
$Q _3=^{\text {th }}$ item $+0.25(6^{\text {th }}.$ item $-5^{\text {th }}$ item $)$
$=25+0.25(32-25)$
$Q_3=25+0.25(7)=26.75$
Inter-quartile range $= Q _3- Q _1$
$=26.75-11.50=15.25$
Semi-quartile range
$=\frac{Q_3-Q_1}{2}=\frac{15.25}{2}=7.625$
Coefficient of quartile deviation
$=\frac{Q_3-Q_1}{Q_3+Q_1}=\frac{26.75-11.50}{26.75+11.50} $
$=\frac{15.25}{38.25}=0.39$